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Abstract—The paper is devoted to a statistical derivation of the equations governing a continuous distribution of
dislocations in a linear elastic medium. We begin with a system of infinitesimal Somigliana dislocations moving
in an elastic medium in accordance with the laws of dynamics of discrete dislocations. By introducing the classical
phase space with its Liouville and transport equations and defining the appropriate expectation values we derive
in the usual manner the equations for the density of the “dislocation fluid”, its velocity and the average elastic
field. As a result we arrive at a compound continuous medium D constituting a mixture of a material elastic
body and the dislocation fluid. The system of equations constitutes a system of seven quasi-linear partial dif-
ferential equations which are shown to be hyperbolic under certain definite conditions. Some general features
of the system are discussed and a one-dimensional example examined in more detail to demonstrate some pro-
perties of the Dy medium ; thus, shock waves and slip planes are shown to exist. The possibility of constructing in
this manner “plastic’” or “‘elastic-plastic” media is briefly considered.

INTRODUCTION

THis paper is devoted to a statistical derivation of the equations governing a continuous
distribution of dislocations in a linear elastic medium. We begin with a system of a finite
number of infinitesimal Somigliana dislocations moving in a linear elastic medium in
accordance with the laws of dynamics of discrete dislocations [1]; a change of the model of
the defect will not influence the general procedure we employ, as long as the defect is in-
finitesimal (see e.g. Appendix A for the derivation of the equations governing continuous
distributions of vacancies). By introducing the classical phase space with its Liouville and
transport equations and defining the expectation values of various physical quantities
connected with the motion of the system, we introduce the Kirkwood formalism making an
extensive use of the Dirac delta functions [2, 3]. This formalism excellently serves our
purpose, since the delta functions appear initially in our problem in the right-hand sides of
the Lamé equations, expressing the influence of the dislocations on the generation of the
elastic displacement field. By ordinary means, as in statistical hydrodynamics, on the basis
of the transport equation we now derive the equations for the density v(x, t) and the velocity
v(x, t) of the dislocation fluid—the continuity and linear momentum equations: the in-
fluence of the displacement (or rather the stresses and the velocity) of the elastic body is
expressed by certain terms in the equation of conservation of the linear momentum.
Further, we introduce the expectation value of the displacement of the elastic body, the
displacement being a random function since it depends on the distribution and motion of
the dislocations by which it is produced ; this makes it possible to perform the averaging
procedure on the Lamé equations and to derive an equation for the expectation value of the
displacement. The procedure employed here is similar to that used in [4] in an investigation
of the macroscopic Maxwell field. Incidentally, the averaging of the Lamé equations results
in a very natural definition of quantities describing the continuous distribution of dislo-
cations, such as the dislocation density tensor, introduced earlier by other authors [5].
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The analogy to the statistical derivation of the hydrodynamics equations is evident ; as
a result we obtain a compound continuous medium Dy constituting a mixture (in the
sense that each geometric point is occupied by two particles, [6, 7] in our case one of
the particles is material, the other may not be material) of the material elastic body and
the dislocation fluid. We do not carry out an analysis of the derived system of seven quasi-
linear partial differential equations, confining ourselves to some general remarks and an
example of a one-dimensional motion of tangential dislocations, for only in the case of one
spatial variable a fairly complete theory of such equations exists. We believe that this
example illustrates the basic features of the Dy medium, such as the creation and pro-
pagation of “‘slip planes” and “‘shock waves”, various types of waves, etc., and indicates the
relation of the Dy medium to the classical “elastic—plastic” body. Obviously, only a further
investigation, first of all thermodynamic considerations, can decide whether it is possible
to construct by statistical methods on the basis of the dynamics of discrete dislocations or
other defects, a rational theory of plasticity. There are strong indications that the answer
is positive.

The structure of the Dy medium investigated in this paper is restricted in the following
sense. In the general case the dislocations are characterized by the vectorial intensity
U and the director n different for each dislocation ; the general theory constructed under

thlS assumption is rather complicated, the fundamental system of differential equations
containing forty-two equations with the following unknowns: the displacement vector wu,
the velocity of the dislocation fluid v, the dislocation density tensor k and the dislocation
velocity tensor €; moreover, instead of one constitutive equation at least three are required.
Needless to say, the complexity of the system of equations makes any conclusions or prac-
tical applications almost impossible; this is emphasized by the fact that presently very
little is known about the properties of the dislocation fluid and no basis is known for
establishing the required constitutive relations. We assume therefore that U = U and

-4
n = n, i.e. these two vectors are the same for all dislocations. Then xk = Unv and € = Unvv.

a

In other words we endow the medium with a homogeneous structure {U, n} and seek only
the density and velocity of the dislocation fluid. A generalization to a mixture of several
such fluids is straightforward.

We do not attempt at this stage to compare our theory with the existing theories of
continuous distribution of dislocations [8—11]. First of all the basic model of the defect is
different ; secondly our fundamental variables are different. In fact, we introduce from the
very beginning a displacement function, the existence of which in most of the theories is
denied. It seems that only a comparison of the final results will be possible.

1. DYNAMICS AND STATISTICS OF DISCRETE DEFECTS

In this section we state the basic relations and formulae concerning the motion of discrete
dislocations ([12], [1]); further, we introduce the appropriate phase space and write down
the Liouville and transport equations. The latter constitutes the basis of the derivation of
the fundamental equations of the continuum theory of dislocations by means of the Kirk-
wood formalism.

The equation of motion of a single dislocation (infinitesimal Somigliana dislocation)
“»’” in an elastic field produced by external sources “0” and other dislocations ““f" has
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the form

=f, =1+ f. 1.1
g a a0 %: aff ( )
B#a

Here p is the linear momentum of the dislocation; if we neglect terms of the order v/c3
o

as compared with unity (linearized theory) p is given in terms of the velocity v by the relation

p' = —n"b,+m"v,. (1.2)
X a a a 4
It was shown in [1] that the first term in (1.2) is proportional to a small parameter t2 where
to is the time required for a sound signal to travel across the dislocation surface ; it will be
neglected in this paper.t We have therefore
pt = m'y, (1.3)

a o a

where the tensorial mass m'” is constant in time and given by the formula}

a

m'P = pcy SAY[6P(m U? + myU)) + myU o UP +m, UUP +msU?n'nP]. (1.4)
a a a a [ - 4 a o a a a

The tensor m"’ is symmetric, non-singular. Its inverse will be denoted by m"’

Here ,u is the Lamé constant, ¢, the second sound velocity, A' isan mﬁmte integral of the
order t; * assumed here to be a finite undetermined constant, my, ..., mg are numerical
coeflicients depending only on the Poisson ratio. Finally U P = b‘s, where b‘ is the Burgers

vector and s is the surface of the defect, is the dlsplacement dlscontmulty vector and n; is

the unit vector normal to the surface.
The force exerted by the external field u(x, ¢} on the dislocation « is given by the formula
0

o*u? ou'
rs 0 1]
a{g(t) = —uquo"" V.-Vrgs+pg,,.-W—2pf,[pg”VqE (L5)

where x;; = Un;. Similarly, for the force of dislocation f§ on dislocation « we have

(32u” (3u

2p%,[pv Vii— (1.6)

j;( ) = —#% qursVV u +p%pl i1 A, a

af 8 2
Here 677 = (1/u)6P%6™ +26P"57%, Observe finally that since f; given formally by (1.6) in
af

which we set a = $, is given by the relation [5]

fi= =3 (1.7)

x

the equation Of motion (11) can be written in the form
(m() B zﬁ) ( )

This is the form we shall use below.

T A generalization presents no difficulties ; it leads to a system of parabolic rather than hyperbolic equations.
1 For the case of dislocations possessing real mass see Appendix B
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The dynamics of a system of dislocations is contained in equations {1.1)~(1.11) and the
energy conservation law

d
d—[%(m‘"’vpvq+n”"épﬁq)—n"“vpiiq] =0 (1.9)
t a a x a o a a
i.e. neglecting n”?
ax

d
&(%r:l”quv;‘q) =0. (1.10)
The quantity %m"“vpvq is naturally called the kinetic energy of the dislocation. Now we are

in a position to proceed to the statistical concepts.

Our phase space I', just as in the case of statistics of a system of material particles obeying
the laws of Newtonian mechanics, is a 6N-dimensional space representing 3N coordinates
€ and 3N linear momenta p of the dislocations. The probability distribution function will
@ a

be denoted by
f=f(§,(lzl,l) (1.11)

and subjected to the normalization condition
ffdl"zl, dlr = dg,...,dgdp,....dp. (1.12)
1 N 1 N
It satisfies the Liouville equation
of
+ Z ( Paéq-l_fp

For any dynamical variable which may in addition to &, p, t depend on the spatial Eulerian

of (1.13)

coordinates x, P = P(g, p. x, t) we have the transport equation

2 dp
<Py = <$> (1.14)

where (P) is the expectation value of P, i.e.
{P> =fPfdl". (1.15)

The transport equation (1.14) will be used in the derivation of the equations of the
continuous dislocation fluid in an elastic body ; this compound medium will be called the
D medium.

2. THE FIELD EQUATIONS

We begin the construction of the set of equations describing the D medium by deriving
the displacement equations. Introduce first the total average displacement by the formula

ux, ) = <ute, )+ Y utx, 0> = utx, 0+ ¥, Culx, 1) 2.1)
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where u(x, t) is the displacement produced by the dislocation « and g(x, t) is due to the
body or external forces. We have [12],
Lg =X, 2.2)
t
Lu, = — J dtU fun,a™FN ,+ pv, 616, — x)d(t — ) (2.3)
where
2

0
L=L;= Péija*ti_#éijv‘(/l“‘#)vivj >

or, performing the integration with respect to time we obtain foru = u+ > u
0 a
Lu;= X;—u Z [U{na"""—cz 25’1}(,,)1)" \Y 5(5, X)—¢5 U U(,,,(S@ x)]. (2.4)

This is an equation for the total displacement field produced by the body forces and dislo-

cations ; we now proceed to deduce on the basis of (2.4) an equation for u(x, t). To this end
we multiply (2.4) by fand integrate over the phase space. Since fis independent of the point
in the physical space, the operator L commutes with { >; we have

(Luy = LZ:’ (2.5)
and obviously
X = X.. (2.6)

To investigate the right-hand side of (2.4) we first introduce the following quantities:
(1) the dislocation density

Z B3E—x) = Z <9). 2.7)
(il The dislocation velocity
(X, VX, 1) = Y <v5> (2.8)
(iii) The dislocation density tensor
K(X, 1) =) <9?é>' 2.9

(iv) The dislocation velocity tensor

ex,t) = ¥ (Unvé. (2.10)



964 HENRYK ZORSK1

Taking into account that

1
Z <Uinqv”v“5> =Yy <( L’inqv”—;siq")(g"— v")f> + e, 07

2 atvns) = 3 ()

+ 3 VLU n ey

— E‘E' I_’
a '’

1
+ V‘l[ Z < ( ajigpl;q ";6,-1,‘.1 )(E”— U")(;S> + Gipq’v’p]

after simple transformations we find that the averaged equation (2.4) takes the form (we
drop the ““av” over the displacement)

0
Lu; = X,.+u(a”"';V,xm+c;26teip€’). (2.11)
Observe that

1
par. = P
PV, = ~V,0;
M D

(2.12)

where Cip = = Ad;pe," + 2ux;, may be called “the stress tensor due to the strain ;. Con-

sequently, denoting by ¢ the Hookean stress based on the displacement ;, equation (2.12)
H

may be written in the form
- e"f',;) = - X\ (2.11)

In other words, the influence of the dislocation fluid is expressed by the change of the stress
tensor by o/ and a change of the inertia force by — p(0/0t)e'? ;.
D

The system of the field equations (2.11), therefore, contains two unknown tensors
describing the distribution and motion of the dislocations; in order to obtain a full set of
equations for the D medium we have to derive the equations describing xk and e this can
be done by means of the transport equation (1.14). Prior to that, however, for the reasons
stated in Introduction we assume that the intensity and director of the dislocation are
independent of ¢, i.e.

Ui = Ui’ n; = n;. (2.13)

We recall, that both U; and »; are constant in time. We are now dealing with an elastic
body filled with identical dislocations. This medium will be denoted by D,.
Under the assumption (2.13) we have

K(Xx, ) = Unv(x, t); e(x, 1) = Unv(x, tjv(x, t) (2.14)
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and the field equations (2.11) take the form (we set »;; = U;n;)
é
Lui—uli%pqa”"’;V,\.'+c'2' Zx,-pg(vv”)] = 0. (2.15)

The two unknown quantities are now v(x, t) and v(x, t). We proceed to deduce the equa-
tions governing these fields.
To derive the equation for v(x, t) we set in the transport equation (1.14) P = ) §; after
® a

standard calculations (see e.g. [2]) we obtain for v(x, t) the ordinary continuity equation

%+V -(vv) = 0. (2.16)
2

The equation for v(x, 1) is the equation of conservation of linear momentum ; we set
here

P=Yps (2.17)

aaa

Again, simple calculations yield the equation

—gtp+V-(vp)——-V~g+§<gf> (2.18)
where
pix.1) = Z (pd). (2.19)
In our case g =m- \af and therefore
p=vm-V. (2.20)
Further,
olx.1) = ~ ¥ <(:—v)(9—%p)§> @21
or

gij(x, ty= —mi?Y ('~ 1')(v,—1,)5). (2.22)

By analogy to the theory of fluids ¢ will be called the kinetic stress tensor ; as well known
K

a system of phenomenological equations derived by means of statistical methods is never
closed and we require for the stress a constitutive relation. It remains to calculate the last
term in (2.18); to this end we use the equation of motion of a single dislocation (1.1). Thus,

> pd> = XA > CEoo+ 2.< 1;5>)- (2.23)

a a,f e

There is no difficulty with the first term, as shown below. The second term is due to the
interaction between the dislocations ; in deriving the hydrodynamics equations where the
interaction is given in terms of potential energy depending on the positions of the particles,
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this term is dealt with as follows : on the basis of the properties of the potential energy it is

proved that this expression is a divergence of a tensor called the stress tensor and a con-

stitutive relation is set up for the sum of the latter and o. As well known, in dilute gases ¢ is
K K

the dominant term while in dense liquids it is small as compared with the interaction stress
tensor. In our case this procedure is not quite satisfactory. First observe that since
f + f # 0 ([12]) the considered term is not a divergence of a tensor ; of course we could

try to establish a constitutive relation for the term Z { 1) itself, in view, however, of the
a,p aba

scarcity of experimental data concerning continuous distributions of dislocations this is
hardly possible. Further, according to (1.9) the forces t/; are given in terms of the fields
a

u(§, t) through which the dislocations interact : therefore, we shall attempt to express the
*p
term Y (pé) by the average displacement field u(x, t). Of course, it turns out that an

approximation is required here, we believe, however, that its introduction does not
influence essentially the properties of the D medium.
Consider first the term due to the external field ; making use of (1.5), (2.7), (1.9) and (2.14)
we obtain
62u” 0u’

Z(ﬁ)é) = —uy qua”‘"sV,-V,l(A)s—c Hpi % 2 —2¢5 *n v Vp] 3 (2.24)

Let us now proceed to the interaction; we first examine the first term of f; given by (1.9).
8
Making use of equation (2.1)
Z <Vinus(s> = Z <(Vivrz‘s - <Vivrus>)5> + \’V,-Vr(us - lgs ) (225)
a,f B a a,f B a

Transforming in a similar manner the remaining terms of the force f; and substituting into
af
(2.23) we have

2..p "
Z(p,é) = —u\(% PV V u,—c; ? p,-aa%—kz_zx,“v"vp]l +F;

1

(2.26)

where

Fix,t) = — [x 7" T (VY it = (VT )0
*uP /%P
—C %P'z <( 6t2 <6t2 >) >
y
—2¢; Zxr[pgﬁ <(V.-]§{— < oy, >)v"5>] (2.27)

In the case of instantaneous interactions, i.e. when in the expression for f/.x (see (1.6) and

the formula for u in [1]) retardations in the transfer of the action are neglected, it can be
proved that F(x, t) is a divergence of a tensor, i.e. F; = V a{’, then we set 6+06 = ¢ and
K P

o is the only quantity for which a constitutive relation is requlred. We assume hereafter
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that this is the case. There are also reasons for neglecting F altogether, at least in the first

approximation, on the following basis. The typical transformation (2.25) aims at replacing

the average of a product by the product of the averages; the difference of these

two Y <(V,~V,u (VV,u >)5> = z (VY s = <V,-V,l;s>)(5— {8>)> constitutes the cor-
o, B « «

relation between the con51dered quantmes It can readily be proved that the integrand

in this expression is proportional to the difference f f f where f is the binary distribu-

afp af
1

tion function and f is that for a single particle (see e.g. [13]). Thus, F(x, t) = 0 when J; f Bf

Our assumption, therefore, means that the interaction between dislocations is com-
pletely described by the term in parenthesis in (2.26). The same can be expressed in a
somewhat different form; since the considered expressions are proportional to the dif-
ferences between the current values and the corresponding averages, we assume that the
fluctuations are vanishingly small as compared with the average values themselves. A
further discussion of this problem requires a more detailed examination of the distribution
function (kinetic equations, etc.) and the structure of the dislocation fluid.

We are now in a position to write down the final form of the linear momentum equation
(2.18); prior to that, however, let us mention the following fact. It will be proved in deriving
the principle of conservation of energy that in the continuous exchange of energy between
the elastic body and the dislocation fluid, the contribution of the last term in parenthesis in
(2.26) is of the order of v?/c? as compared with the contribution of the last term in (2.15);
since we assumed in the dynamics of discrete dislocations that v?/c3 < 1 and the average

o

velocity cannot be greater than that of separate dislocations, we may neglect the considered
term on the basis that its energy contribution is negligible. This is done for consistence only ;
it does simplify somewhat the equation, but does not change any of its basic properties.
Thus, after simple transformations, making use of the continuity equation (2.16) we finally
obtain

Dvi 1-1,_ in e uP
oM™ WV 0 "+2um (x gP"V V. u,—c; pr,,a—tz—) =0 (2.28)
or
Dy 1-t._ -1 o0*u? ,
Bt——-m LV, 6"+ 2 m ", (V aPl— pol 6t2) =0 (2.28%)

where ¢ is the Hookean stress tensor based on the displacement u;.
H
The first two terms in (2.28) are the same as in the hydrodynamics of a perfect fluid ; the
term

-1 2

. o*uP
2m’"qu(V,,g" —pdd 6t2)

expresses the influence of the displacement field in the elastic body on the motion of the
dislocation fluid.

If we postulate a constitutive relation for ¢ the system of equations (2.12), (2.16) and
(2.28) constitutes a system of seven equations with seven unknowns w(x, t), v(x,t) and
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v(x, t). As mentioned before, there is at present very little experimental data for establishing
the constitutive relation, in this paper therefore, we make the simplest assumption that
the fluid is perfect and barotropic, i.e. that (cf. equation (2.22)).

ol = —mp(y). (2.29)
Furthermore, assuming that the flow is “‘adiabatic” we set
vi?
plv) = po(v) = o (2.30)
0
where 9, py, v are constants; y will be called the adiabatic exponent. As in the theory of
gases (2.29)and (2.30) can to a certain extent be justified by means of the kinetic and thermo-
dynamic argument, we regard it here, however, as a postulate. Denoting ¢? = dp/dv which
will hereafter be called the propagation velocity, we finally arrive at the following system
of equations:

0%u; 0,
szu,-+(/1+y)V,-Vpu"-—p%t—2'+;mpq o””;V,v-%—c{zo,‘-’El—(vv“) = —X;

dv

5+VP(VUP) =0 (231)
Dv; ¢? -1 < _, . 0%uP

Dr +TV,-v+2/1m; Xpal 0PV, V5~ Zéﬂ—a}i) = 0.

This is the required system of seven quasi-linear equations with seven unknowns,
describing the D; medium. The system contains second derivatives of u and first derivatives
of v and v: by ordinary substitutions it can readily be reduced to a system of nineteen first
order quasi-linear partial differential equations. A fairly complete theory of such systems
exists only in the case of one spatial variable; in the general case only local existence
theorems and uniqueness for regular solutions can be proved (see e.g. [14]). It is well known
from the theory of one-dimensional problems ([14-17]) that the general regular solutions
exist only locally, i.e. independently of the smoothness of the initial data there arise after
a finite time discontinuity surfaces, which in our case are shock waves and slip planes,
propagated with velocities different from characteristic. Another important property of
our systems concerns the irreversibility of the process it describes; the situation here is
the following. The system of equations (2.31) is invariant with respect to the inversion of
time ; this statement however, has a meaning only in the case of regular solutions when all
functions u, v, v, Yu, du/dt are continuous. If, now, we are faced with discontinuous {(gen-
eralized, weak) solutions which is in fact the case, we have the following results ([15, 16]):
if we start with a generalized stable solution of the Cauchy problem denoting it by A(x, t)
with the initial conditions at ¢ = 0, then the Cauchy problem posed for t < ¢; with the
initial values A(x, t,) at ¢, is unstable. This fact is due to the generation of the discontinuity
surfaces and in gas dynamics expresses the phenomenon of increase of entropy in pass-
ing through the shock wave. In this paper the thermodynamics is not considered at all,
no entropy has been introduced and the principle of conservation of energy is derived
on the basis of the phenomenological equations (2.31) rather than from the theory of
discrete system via the transport equation ; consequently we cannot find with a certainty
a direct physical meaning of the irreversibility of the process, it seems, however, that the
situation closely resembles that in hydrodynamics.

There is no difficulty in writing down the principle of conservation of energy, basing on
(2.31). It is deduced by introducing the density of the internal energy of the dislocation
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fluid ¢, multiplying the first equation by «, the last by v, adding the results and integrating
over a fixed volume. Now we can justify the omission of the last term in (2.24); in fact, this
term multiplied by v is proportional to the expression ¢, 2vvvVi while from the first equa-
tion (2.31) we obtain a term vVu; since v2/c3 < 1 the contribution of the considered term
to the energy exchange between the elastic body and the dislocation fluid during any interval
of time, is negligible. Therefore, it is consistent to neglect it.

The differential form of the law of energy conservation is the following:

J 1,74 Pq cu? 4
P (IT+ T)+ v(e+3mPv,0,) + viep, g _p‘@?v

Ou 1
+ V,[ — (g"’ + g”’)a—:+ %pquq\’v’ + v(su’ - ;g”'vp + %m”"vpqu’) ] =0 (232

Here IT and T are the potential and kinetic energies of the elastic body calculated by means
of the displacement u;. Thus, the density of the internal energy of the Dg medium is composed
of the sum of the energies of its constituents completed by the interaction term

rq up q
I’qul(; —PE"*U .

Similarly, the energy flux vector is composed of the flux vectors of the constituents and the
interaction term

u
Vo P — g 2.
H p Ot

To end the section consider the expression for the mechanical stress in the solid body ;
the term “solid body” is used intentionally, since the presence of the dislocations intro-
duces a new term into the constitutive relation and the body is no longer elastic. Consider,
therefore, a single small Somigliana dislocation ; the permanent discontinuous displacement
it generates, to within a rigid displacement of the whole body, has the form

u, = b(s) (2.33)

where #(s) is the Heaviside function on the surface of the dislocation. The corresponding
strain is obtained by differentiation :
p p
&= Vuy = baVyn(s) = bunydls) (2.34)
where J(s) is the Dirac function ; the latter can be represented as an integral over the surface
o

s of the three-dimensional Dirac function. Taking into account that s is very small we have
a

X

p
£ij = f dabin; 3§ —X) = 2,06 —X). (2.35)

Hence, the increment of the permanent strain during the time interval Jt is given by the
relation

Sty = 5:%[%. BE—X)] = — OtV [, 0"5(E —x)]. (2.36)

a a
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Setting now in the restricted theory x;; = U;n; = »;; we calculate the expectation value of
a

the strain increment (2.30). We obtain

de%,1) = Y. (i = — BtV [v(x, 0eP(x, 1) (2.37)

Thus, the total permanent strain at instant ¢ is given by the integral

p

X, 1) = —x(,-j,fo dov(x, tP(x, 1). (2.38)

Finally, making use of the continuity equation for the dislocation fluid (2.16) we have

p

X, 1) = x,v(X, B). (2.39)

Now, by definition of the average displacement, the total strain at point x and instant
t is given by the usual relation ¢;(x, t) = V,u,(x, t). Thus, the elastic strain connected

) A. : , 4 .
with the stress g” by the Hooke law is the difference ¢;;—¢;; and for the mechanical stress

we obtain the relation

o= gij—i—(}téijU(,,,+2,u%(ij))v. (2.40)

Observe that in the base of tangenial dislocations
o7 = BA+2u)V ub.

The formulae (2.39) and (2.40) were deduced in different theories before (see e.g. [5]).
Now, v is involved in a system of differential equations with ¢"/ and 8?u,/dt? and, therefore,
H

in general, the classical statement of the constitutive relation connecting the measurable
(mechanical) stress ¢*/ with the measurable strain &; = Vqu; can be constructed only
a posteriori, after having solved the system (2.31) with the appropriate initial and boundary
conditions. In this sense, no “plasticity condition” is assumed beforehand but it should
follow from the theory itself. Furthermore, in general, ¢;; is a functional of the past. As
mentioned before, even when the initial solid body is perfectly elastic, the dynamics of the
discrete system is invariant with respect to the inversion of time and the basic model of
the defect does not change in the course of the process, as is the case in our theory, in view
of the generation of the discontinuity surfaces, the process is irreversible.

3. ONE-DIMENSIONAL MOTION OF TANGENTIAL DISLOCATIONS

This example will serve to demonstrate some properties of the discontinuity surfaces
arising in a kind of a shear of an infinite space. Assume first that the dislocations are tan-
gential, ie. U-n = 0; without loss of generality we can assume that U = U(1,0,0) and
n = (0, 1, 0); further, assume that the motion occurs in the xy-plane, i.e. u; = v; = 0 and
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all quantities depend only on y and . Then the system of equations (2.31) takes the form

1 ov ov
O%u, = —-X,, 6_11 ”Za_yl =0
0 1
DB +U| G to () | = =X,
dy 0 P
. 3.1)
o =0
6t+(7 (vu3)
v, vy, c*ov oy duy
LY el TR e AL

where
0* 0 -1 -1 %u
0i.= c%’z(?_yz—ﬁ’ x=2pmy,U%, Yy, t) = —2um zzﬁzz-
Thus, u,(y, t) can be found independently (e.g. u, = 0 when X, = 0) and v,(y,t) can be
determined after u,, v, , v, have been found. Our system of equations therefore (3.1%)~(3.1°)
consists of three quasi-linear equations with three unknowns. As mentioned before, the

theory of such equations is fairly well developed ([14-17]).
The characteristic velocities are the following

A1, = ¢ (3.2)

! {vzic\/lixv(v—g—l)+l]} (3.3)
— v ¢

and the hyperbolicity condition has the form

j'3,4 = 1

v3
o|2-1]+1>0 (3.4)

In the case of vanishing yv the propagation of weak waves in the two media becomes
independent and we obtain the familiar results 4, , = +c¢,, 434 = v, +c. Observe that
since yv > O the supersonic motion v3/c* > 1 is always hyperbolic. We assume hereafter
that (3.4) is satisfied, i.e. the Cauchy problem is well posed.

Now, it is known that no matter how continuous the initial conditions are, regular
solutions of (3.1) do not exist globally and we have to consider weak solutions, i.e. in our
case v and v, will have finite jumps on certain surfaces, similarly to the first derivatives of
u,. These surfaces of strong discontinuities, in the absence of the body forces X ,, X ,, will
be in our case the lines y = const. in the xy-plane, and will be propagated with certain
velocities different from (3.2) or (3.3). To investigate this propagation we derive in
the usual manner the relations between the considered jumps, which we shall call the
dynamic compatibility conditions (sometimes the name generalized Rankine-Hugoniot
relations is used); taking into account that the kinematic compatibility condition ([7],

Section 190) reads [Ju,/0t] = (Ju/dt)* —(Bu,/0t)” = —c*[du,/dy] where c* is the velocity
of propagation of the considered strong discontinuity, and that
du,

O12 = U——, G132 =06y, +uUy,
H dy H
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we obtain writing v= 3(v* +v7), v, = Y] +0v5),

k2
(1—%{)([012]*‘#[]["]) =0 or[o,] =0, since ¢* < ¢,
2y

(0 —c*)[v]+1[v,] = 0 (3.5)

(13 = c*)[v,] +)—1H U0 = 0
This is a system of homogeneous equations; equating to zero its determinant we obtain
the expression for ¢*:

1 3 I+e; 1-(viy~!
¥ = b -t ! 2 — Yy + +
€12 I_X\'{Lz tc \/I:X‘ (C+)2+(1 X‘)Z(y—l) T (3.6)

here v; = v~ /v" and ¢” is the value of ¢ on the “+ side of the discontinuity sur-
face. For theorems concerning the problems of existence and uniqueness we refer the
reader to the above mentioned references. A method of selecting physically meaningful
solutions is to consider the parabolic system with n'/ # 0 and select the solutions obtained
asn’ — 0.
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APPENDIX A

STATISTICAL THEORY OF CONTINUOUS DISTRIBUTIONS
OF VACANCIES

It has been conjectured by some authors (see e.g. [18]) that the fracture of certain types
of materials can be explained by the concentration of vacancies. In this connection a statis-
tical theory of continuous distributions of vacancies may be of interest. The basic equations
can be derived as for the dislocations by changing the model as shown below. However, an
examination of the derivation of (2.31) indicates that the same can be obtained directly
from (2.31).

To construct a vacancy, [11], we assume that the surface of the dislocation &s is a sphere

of a very small radius ¢; further we set U = Un and consider U as a known constant. The
required vacancy is then obtained by integrating over s. Performing the integration in (2.31),
4

in view of the smallness of ¢ we assume that all functions appearing in (2.31) are calculated
at the center of the vacancy. Taking into account that

4 2
f da = 4n¢?, f dann; = —1;8—5”

and dividing throughout by ¢* we obtain

2

u; 1 0
uV2uy +(A+ p)V,V 4P —p ”'+—MU[KV,.v+c;ZE(m,.)] = -X,

I
v
T4V, nn) =0 (A1)
ot

Do, o MU gy w28 g

Dtviv3m ivVp 2 2| T

where
3/1 —5Al1772 1
K=—+2, m = pc; *A U [my+m, +3(m; +my+my)].

U

This is the required system.
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APPENDIX B
ON THE TRANSFER OF MASS

In all our considerations it was tacitly assumed that there is no diffusion (transfer) of
mass, i.e. that the defects possess no real mass. The case, however, may be different when
we deal with defects such as interstitial atoms and vacancies. Then the following modifica-
tion should be introduced to (2.31) and (A1).

First, the expression for the tensorial mass m'? (1.4) should be replaced by the following :

m'? = mé'? +m'’? (B1)

where m is the real mass of the dislocation. Secondly, the transfer of mass changes the Lamé
equations. Thus, in a convected volume there are mass sources ([19, 7]) and the continuity
equation for the linear elastic body has the form

LA
Eﬁ-puﬁ = ps (B2)

where p is the density in the natural state and hence the total density is p + p’; s denotes the
mass sources per unit mass of the body. The presence of s influences the equations of motion
in such a way that the body force is replaced by the expression

X;— psu;.

In our case s = U ,v and the first equation (2.31) takes the form

2
+ qu[a"“’;Vrv +eytors (vv")] (B3)

- pU(n)Vui - - Xi‘

The remaining equations of the system are of course unchanged. The corresponding
equation (Al) is the following:
2

0Cu; 1 0
,quui-F(;H-M)Vivpup—p%-f-g,uU(")l:KV,»vﬁ-6225;(\f'vi)j|—pU(,,)\"ui = _X, (B4)

It is to be borne in mind that in the case of vacancies U ,, < 0.

(Received 26 November 1967)

AobcTpakT—Llensto paboThl ABNAETCA CTATUCTHYECKMIl BBIBOJ YypaBHEHMH, KacaroIIMXCH HEMPEPUBHOrO
pacnpeeneH|s AMCIIOKAUMi B TMHEHHOW ynpyro# cpene. ABTOP MCXOOUT U3 CUCTEMBI HHOUHUMHTE3IUMA-
NbHBIX Aucaokauuit CoMulbAHa, KOTOPbIC NMEPEABUIAlOTCA B yNpyroil cpene, B COIJIACMM C 3aKOHaAMH
OMHAMHWKA OUCKpeTHbIX auciokaumii. IlyTeM BBegeHus knaccuveckoro ¢(Ga3HOro IMpocpaHCTBA ¢ €ro
ypaBHeHHsAMH JIMYBUIIJISL M OBUKEHUS U, TNIPEANONIaras OXUIAEMbIE 3HAYEHWSA, ONPEAC/ISAIOTCS, OOBIYHBIM
CrnocoOoM, ypaBHeHWS IS TUIOTHOCTM JKHIOKOCTH OMCIOKALMH, W, €8 CKOPOCTH, 2@ TakXke CpeoHOe MoJie
YNpYrocTH. B pelynBrare MHOIy4aeTcs C/IOKHAs HerpepbiBHas cpena Dy, KoTopas ABIAETCS CMECHIO
MaTEPHANBHOTO YIIPYroro Teja YU KuAKocTH aucinokanuu. Cucrema ypaBHEHMIl COCTOMT W3 CHCTeMbI 7
KBa3u-IMHERHBIX aupdepeHunaNbHbIX YPaBHEHMH B YAaCTHBIX TIPOU3BOAHBIX, KOTOpbIE HABISIOTCA
runepOOIMYECKUMH TIPY HEKOTOPRIX 3aJaHHBIX ycnosusix. OOCyxnatoTcs HeKoTOpbie 00luuMe CBOHCTBa
cuctembl. IIpencTaBnsercs, AeTajibHO, NMPUMEP IJIA YKa3aHNSA HEKOTOPBIX CBOWUCTB cpeabl Dj. Oka3biBato-
TCH, YTO B AAHHOM CNy4ae MOSBIAIOTCA YNAPHbIE BOJHBI M IIOCKOCTH CKONbMeHUsi. Jloxa3piBaeTcs

2293 23

KOPOTKO BO3MOXHOCTb HOCTPOEHHMSI TAKUM 00pa3oM ‘‘racTuyeckoil’’ WM “‘ynpyro-miacruyeckoit’” cpen.



